机器学习中正则化项L1和L2的直观理解

前端之家收集整理的这篇文章主要介绍了机器学习中正则化项L1和L2的直观理解前端之家小编觉得挺不错的,现在分享给大家,也给大家做个参考。

正则化(Regularization)

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ@H_403_13@@H_403_13@@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@ℓ1@H_403_13@@H_403_13@-norm@H_403_13@和ℓ@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@ℓ2@H_403_13@@H_403_13@-norm@H_403_13@,中文称作L1正则化@H_403_13@@H_403_13@和L2正则化@H_403_13@@H_403_13@,或者L1范数@H_403_13@@H_403_13@和L2范数@H_403_13@@H_403_13@。

L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α@H_403_13@|@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@w@H_403_13@|@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@α||w||1@H_403_13@@H_403_13@即为L1正则化项。

下图是Python中Ridge回归的损失函数,式中加号后面一项α@H_403_13@|@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@w@H_403_13@|@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@α||w||22@H_403_13@@H_403_13@即为L2正则化项。

一般回归分析中回归w@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:@H_403_13@

一般都会在正则化项之前添加一个系数,Python中用α@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@α@H_403_13@@H_403_13@表示,一些文章也用λ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ@H_403_13@@H_403_13@表示。这个系数需要用户指定。

添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用@H_403_13@,这些表述可以在很多文章中找到。

  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

稀疏模型与特征选择

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

L1和L2正则化的直观理解

这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的)@H_403_13@@H_403_13@,以及为什么L2正则化可以防止过拟合@H_403_13@@H_403_13@。

L1正则化和特征选择

假设有如下带L1正则化的损失函数

J@H_403_13@@H_403_13@=@H_403_13@J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@+@H_403_13@α@H_403_13@∑@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@w@H_403_13@|@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(1)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(1)J=J0+α∑w|w|@H_403_13@@H_403_13@

其中 J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@是原始的损失函数,加号后面的一项是L1正则化项, α@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@α@H_403_13@@H_403_13@是正则化系数。注意到L1正则化是权值的 绝对值之和@H_403_13@, J@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J@H_403_13@@H_403_13@是带有绝对值符号的函数,因此 J@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J@H_403_13@@H_403_13@是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数 J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@后添加L1正则化项时,相当于对 J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@做了一个约束。令 L@H_403_13@@H_403_13@=@H_403_13@α@H_403_13@∑@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@w@H_403_13@|@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L=α∑w|w|@H_403_13@@H_403_13@,则 J@H_403_13@@H_403_13@=@H_403_13@J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@+@H_403_13@L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J=J0+L@H_403_13@@H_403_13@,此时我们的任务变成 L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@约束下求出J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@取最小值的解@H_403_13@。考虑二维的情况,即只有两个权值 w@H_403_13@@H_403_13@@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w1@H_403_13@@H_403_13@和 w@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w2@H_403_13@@H_403_13@,此时 L@H_403_13@@H_403_13@=@H_403_13@|@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@+@H_403_13@|@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L=|w1|+|w2|@H_403_13@@H_403_13@对于梯度下降法,求解 J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@的过程可以画出等值线,同时L1正则化的函数 L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@也可以在 w@H_403_13@@H_403_13@@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w1w2@H_403_13@@H_403_13@的二维平面上画出来。如下图:


图1 L1正则化

图中等值线是J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@的等值线,黑色方形是L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@函数的图形。在图中,当J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@等值线与L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@图形首次相交的地方就是最优解。上图中J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@与L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@在L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(@H_403_13@w@H_403_13@@H_403_13@@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@,@H_403_13@w@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@)@H_403_13@=@H_403_13@(@H_403_13@0@H_403_13@,@H_403_13@w@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(w1,w2)=(0,w)@H_403_13@@H_403_13@。可以直观想象,因为L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@函数有很多『突出的角』(二维情况下四个,多维情况下更多),J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@与这些角接触的机率会远大于与L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

而正则化前面的系数α@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@α@H_403_13@@H_403_13@,可以控制L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@图形的大小。α@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@α@H_403_13@@H_403_13@越小,L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@的图形越大(上图中的黑色方框);α@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@α@H_403_13@@H_403_13@越大,L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(@H_403_13@w@H_403_13@1@H_403_13@,@H_403_13@w@H_403_13@2@H_403_13@)@H_403_13@=@H_403_13@(@H_403_13@0@H_403_13@,@H_403_13@w@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(w1,w)@H_403_13@@H_403_13@中的w@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@可以取到很小的值。

类似,假设有如下带L2正则化的损失函数

J@H_403_13@@H_403_13@=@H_403_13@J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@+@H_403_13@α@H_403_13@∑@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(2)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(2)J=J0+α∑ww2@H_403_13@@H_403_13@

同样可以画出他们在二维平面上的图形,如下:


图2 L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J@H_403_13@@H_403_13@@H_403_13@@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@J0@H_403_13@@H_403_13@与L@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@L@H_403_13@@H_403_13@相交时使得w@H_403_13@@H_403_13@@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w1@H_403_13@@H_403_13@或w@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w2@H_403_13@@H_403_13@等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

L2正则化和过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

那为什么L2正则化可以获得值很小的参数?@H_403_13@

以线性回归中的梯度下降法为例。假设要求的参数为θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@,h@H_403_13@@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@x@H_403_13@@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@hθ(x)@H_403_13@@H_403_13@是我们的假设函数,那么线性回归的代价函数如下:

J@H_403_13@@H_403_13@(@H_403_13@θ@H_403_13@@H_403_13@)@H_403_13@=@H_403_13@1@H_403_13@@H_403_13@@H_403_13@2@H_403_13@m@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@∑@H_403_13@@H_403_13@@H_403_13@i@H_403_13@=@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@m@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@h@H_403_13@@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@x@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@i@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@)@H_403_13@−@H_403_13@y@H_403_13@@H_403_13@@H_403_13@(@H_403_13@i@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@)@H_403_13@@H_403_13@@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(3)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(3)J(θ)=12m∑i=1m(hθ(x(i))−y(i))2@H_403_13@@H_403_13@

那么在梯度下降法中,最终用于迭代计算参数 θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@的迭代式为:
θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@:=@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@−@H_403_13@α@H_403_13@1@H_403_13@@H_403_13@@H_403_13@m@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@∑@H_403_13@@H_403_13@@H_403_13@i@H_403_13@=@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@m@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@h@H_403_13@@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@x@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@i@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@)@H_403_13@−@H_403_13@y@H_403_13@@H_403_13@@H_403_13@(@H_403_13@i@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@)@H_403_13@x@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@i@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(4)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(4)θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)@H_403_13@@H_403_13@

其中 α@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@α@H_403_13@@H_403_13@是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:
θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@:=@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@1@H_403_13@−@H_403_13@α@H_403_13@λ@H_403_13@@H_403_13@@H_403_13@m@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@)@H_403_13@−@H_403_13@α@H_403_13@1@H_403_13@@H_403_13@@H_403_13@m@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@∑@H_403_13@@H_403_13@@H_403_13@i@H_403_13@=@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@m@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@h@H_403_13@@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@x@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@i@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@)@H_403_13@−@H_403_13@y@H_403_13@@H_403_13@@H_403_13@(@H_403_13@i@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@)@H_403_13@x@H_403_13@@H_403_13@@H_403_13@@H_403_13@(@H_403_13@i@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(5)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@(5)θj:=θj(1−αλm)−α1m∑i=1m(hθ(x(i))−y(i))xj(i)@H_403_13@@H_403_13@

其中 λ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ@H_403_13@@H_403_13@就是正则化参数@H_403_13@。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代, θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@θj@H_403_13@@H_403_13@都要先乘以一个小于1的因子,从而使得 θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@θj@H_403_13@@H_403_13@不断减小,因此总得来看, θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@是不断减小的。

最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果

正则化参数的选择

L1正则化参数

通常越大的λ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ@H_403_13@@H_403_13@可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

假设有如下带L1正则化项的代价函数

F@H_403_13@@H_403_13@(@H_403_13@x@H_403_13@@H_403_13@)@H_403_13@=@H_403_13@f@H_403_13@@H_403_13@(@H_403_13@x@H_403_13@@H_403_13@)@H_403_13@+@H_403_13@λ@H_403_13@|@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@x@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@|@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@1@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@F(x)=f(x)+λ||x||1@H_403_13@@H_403_13@

其中 x@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@x@H_403_13@@H_403_13@是要估计的参数,相当于上文中提到的 w@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@w@H_403_13@@H_403_13@以及 θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@θ@H_403_13@@H_403_13@. 注意到L1正则化在某些位置是不可导的,当 λ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ@H_403_13@@H_403_13@足够大时可以使得 F@H_403_13@@H_403_13@(@H_403_13@x@H_403_13@@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@F(x)@H_403_13@@H_403_13@在 x@H_403_13@@H_403_13@=@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@x=0@H_403_13@@H_403_13@时取到最小值。如下图:


图3 L1正则化参数的选择

分别取λ@H_403_13@=@H_403_13@0.5@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ=0.5@H_403_13@@H_403_13@和λ@H_403_13@=@H_403_13@2@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ=2@H_403_13@@H_403_13@,可以看到越大的λ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ@H_403_13@@H_403_13@越容易使F@H_403_13@@H_403_13@(@H_403_13@x@H_403_13@@H_403_13@)@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@F(x)@H_403_13@@H_403_13@在@H_403_3257@x@H_403_13@@H_403_13@=@H_403_13@0@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@x=0@H_403_13@@H_403_13@时取到最小值。

L2正则化参数

从公式5可以看到,λ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ@H_403_13@@H_403_13@越大,θ@H_403_13@@H_403_13@@H_403_13@@H_403_13@j@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@θj@H_403_13@@H_403_13@衰减得越快。另一个理解可以参考图2,λ@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@@H_403_13@λ@H_403_13@@H_403_13@越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。

Reference

过拟合的解释:
https://hit-scir.gitbooks.io/neural-networks-and-deep-learning-zh_cn/content/chap3/c3s5ss2.html

正则化的解释:
https://hit-scir.gitbooks.io/neural-networks-and-deep-learning-zh_cn/content/chap3/c3s5ss1.html

正则化的解释:
http://www.jb51.cc/article/p-wuohknap-bq.html

正则化的数学解释(一些图来源于这里):
http://www.jb51.cc/article/p-zqcpdokc-me.html

猜你在找的正则表达式相关文章