时间限制:1000ms
单点时限:1000ms
内存限制:256MB
题目链接:http://hihocoder.com/problemset/problem/1110
题目分析:典型区间dp题,和括号匹配做法类似,设dp[i][j]为将区间i到j变成合法正则表达式所需要增添的最小字符数,显然若区间i到j合法则有dp[i][j] == 0,初始状态若s[i]为'0'或'1',则dp[i][i] = 0,否则为无穷大,然后枚举长度进行区间dp,对于五个定义,定义1用来做上述初始化,定义2和5是一类,需要枚举分割点,若区间内不存在'|',则用定义2,否则用定义5;定义3和4是一类,直接判断即可,定义3若括号内的是合法的则加上括号也合法,定义4若dp[i][j - 1]合法,加一个'*'也合法,最后判断dp[0][len - 1]是否为0即可
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- using namespace std;
- int const MAX = 105;
- int const INF = 0x3fffffff;
- char s[MAX];
- int dp[MAX][MAX];
- int main()
- {
- while(scanf("%s",s) != EOF)
- {
- int len = strlen(s);
- for(int i = 0; i < len; i++)
- for(int j = 0; j < len; j++)
- dp[i][j] = INF;
- for(int i = 0; i < len; i++)
- if(s[i] == '0' || s[i] == '1')
- dp[i][i] = 0;
- for(int l = 1; l < len; l++)
- {
- for(int i = 0; i < len - l; i++)
- {
- int j = i + l;
- if((s[i] == '(' && s[j] == ')') && dp[i + 1][j - 1] == 0)
- dp[i][j] = 0;
- if(s[j] == '*' && dp[i][j - 1] == 0)
- dp[i][j] = 0;
- for(int k = i; k < j; k++)
- {
- if(dp[i][k] == 0 && dp[k + 1][j] == 0)
- dp[i][j] = 0;
- if(s[k] == '|' && k > 0 && dp[i][k - 1] == 0 && dp[k + 1][j] == 0)
- dp[i][j] = 0;
- }
- }
- }
- printf("%s\n",dp[0][len - 1] ? "no" : "yes");
- }
- }