BP神经网络是最简单的神经网络模型了,三层能够模拟非线性函数效果。
难点:
- 如何确定初始化参数?
- 如何确定隐含层节点数量?
- 迭代多少次?如何更快收敛?
- 如何获得全局最优解?
- '''
- neural networks
- created on 2019.9.24
- author: vince
- '''
- import math
- import logging
- import numpy
- import random
- import matplotlib.pyplot as plt
- '''
- neural network
- '''
- class NeuralNetwork:
- def __init__(self,layer_nums,iter_num = 10000,batch_size = 1):
- self.__ILI = 0;
- self.__HLI = 1;
- self.__OLI = 2;
- self.__TLN = 3;
- if len(layer_nums) != self.__TLN:
- raise Exception("layer_nums length must be 3");
- self.__layer_nums = layer_nums; #array [layer0_num,layer1_num ...layerN_num]
- self.__iter_num = iter_num;
- self.__batch_size = batch_size;
- def train(self,X,Y):
- X = numpy.array(X);
- Y = numpy.array(Y);
- self.L = [];
- #initialize parameters
- self.__weight = [];
- self.__bias = [];
- self.__step_len = [];
- for layer_index in range(1,self.__TLN):
- self.__weight.append(numpy.random.rand(self.__layer_nums[layer_index - 1],self.__layer_nums[layer_index]) * 2 - 1.0);
- self.__bias.append(numpy.random.rand(self.__layer_nums[layer_index]) * 2 - 1.0);
- self.__step_len.append(0.3);
- logging.info("bias:%s" % (self.__bias));
- logging.info("weight:%s" % (self.__weight));
- for iter_index in range(self.__iter_num):
- sample_index = random.randint(0,len(X) - 1);
- logging.debug("-----round:%s,select sample %s-----" % (iter_index,sample_index));
- output = self.forward_pass(X[sample_index]);
- g = (-output[2] + Y[sample_index]) * self.activation_drive(output[2]);
- logging.debug("g:%s" % (g));
- for j in range(len(output[1])):
- self.__weight[1][j] += self.__step_len[1] * g * output[1][j];
- self.__bias[1] -= self.__step_len[1] * g;
- e = [];
- for i in range(self.__layer_nums[self.__HLI]):
- e.append(numpy.dot(g,self.__weight[1][i]) * self.activation_drive(output[1][i]));
- e = numpy.array(e);
- logging.debug("e:%s" % (e));
- for j in range(len(output[0])):
- self.__weight[0][j] += self.__step_len[0] * e * output[0][j];
- self.__bias[0] -= self.__step_len[0] * e;
- l = 0;
- for i in range(len(X)):
- predictions = self.forward_pass(X[i])[2];
- l += 0.5 * numpy.sum((predictions - Y[i]) ** 2);
- l /= len(X);
- self.L.append(l);
- logging.debug("bias:%s" % (self.__bias));
- logging.debug("weight:%s" % (self.__weight));
- logging.debug("loss:%s" % (l));
- logging.info("bias:%s" % (self.__bias));
- logging.info("weight:%s" % (self.__weight));
- logging.info("L:%s" % (self.L));
- def activation(self,z):
- return (1.0 / (1.0 + numpy.exp(-z)));
- def activation_drive(self,y):
- return y * (1.0 - y);
- def forward_pass(self,x):
- data = numpy.copy(x);
- result = [];
- result.append(data);
- for layer_index in range(self.__TLN - 1):
- data = self.activation(numpy.dot(data,self.__weight[layer_index]) - self.__bias[layer_index]);
- result.append(data);
- return numpy.array(result);
- def predict(self,x):
- return self.forward_pass(x)[self.__OLI];
- def main():
- logging.basicConfig(level = logging.INFO,format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',datefmt = '%a,%d %b %Y %H:%M:%S');
- logging.info("trainning begin.");
- nn = NeuralNetwork([2,2,1]);
- X = numpy.array([[0,0],[1,1],[0,1]]);
- Y = numpy.array([0,1,1]);
- nn.train(X,Y);
- logging.info("trainning end. predict begin.");
- for x in X:
- print(x,nn.predict(x));
- plt.plot(nn.L)
- plt.show();
- if __name__ == "__main__":
- main();
具体收敛效果