数据采用了著名的sklearn自带的iries数据,最优化求解采用了SGD算法。
预处理增加了标准化操作。
- '''
- perceptron classifier
- created on 2019.9.14
- author: vince
- '''
- import pandas
- import numpy
- import logging
- import matplotlib.pyplot as plt
- from sklearn.datasets import load_iris
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import accuracy_score
- '''
- perceptron classifier
- Attributes
- w: ld-array = weights after training
- l: list = number of misclassification during each iteration
- '''
- class Perceptron:
- def __init__(self,eta = 0.01,iter_num = 50,batch_size = 1):
- '''
- eta: float = learning rate (between 0.0 and 1.0).
- iter_num: int = iteration over the training dataset.
- batch_size: int = gradient descent batch number,if batch_size == 1,used SGD;
- if batch_size == 0,use BGD;
- else MBGD;
- '''
- self.eta = eta;
- self.iter_num = iter_num;
- self.batch_size = batch_size;
- def train(self,X,Y):
- '''
- train training data.
- X:{array-like},shape=[n_samples,n_features] = Training vectors,where n_samples is the number of training samples and
- n_features is the number of features.
- Y:{array-like},share=[n_samples] = traget values.
- '''
- self.w = numpy.zeros(1 + X.shape[1]);
- self.l = numpy.zeros(self.iter_num);
- for iter_index in range(self.iter_num):
- for sample_index in range(X.shape[0]):
- if (self.activation(X[sample_index]) != Y[sample_index]):
- logging.debug("%s: pred(%s),label(%s),%s,%s" % (sample_index,self.net_input(X[sample_index]),Y[sample_index],X[sample_index,0],1]));
- self.l[iter_index] += 1;
- for sample_index in range(X.shape[0]):
- if (self.activation(X[sample_index]) != Y[sample_index]):
- self.w[0] += self.eta * Y[sample_index];
- self.w[1:] += self.eta * numpy.dot(X[sample_index],Y[sample_index]);
- break;
- logging.info("iter %s: %s,%s" %
- (iter_index,self.w[0],self.w[1],self.w[2],self.l[iter_index]));
- def activation(self,x):
- return numpy.where(self.net_input(x) >= 0.0,1,-1);
- def net_input(self,x):
- return numpy.dot(x,self.w[1:]) + self.w[0];
- def predict(self,x):
- return self.activation(x);
- def main():
- logging.basicConfig(level = logging.INFO,format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',datefmt = '%a,%d %b %Y %H:%M:%S');
- iris = load_iris();
- features = iris.data[:99,[0,2]];
- # normalization
- features_std = numpy.copy(features);
- for i in range(features.shape[1]):
- features_std[:,i] = (features_std[:,i] - features[:,i].mean()) / features[:,i].std();
- labels = numpy.where(iris.target[:99] == 0,-1,1);
- # 2/3 data from training,1/3 data for testing
- train_features,test_features,train_labels,test_labels = train_test_split(
- features_std,labels,test_size = 0.33,random_state = 23323);
- logging.info("train set shape:%s" % (str(train_features.shape)));
- p = Perceptron();
- p.train(train_features,train_labels);
- test_predict = numpy.array([]);
- for feature in test_features:
- predict_label = p.predict(feature);
- test_predict = numpy.append(test_predict,predict_label);
- score = accuracy_score(test_labels,test_predict);
- logging.info("The accruacy score is: %s "% (str(score)));
- #plot
- x_min,x_max = train_features[:,0].min() - 1,train_features[:,0].max() + 1;
- y_min,y_max = train_features[:,1].min() - 1,1].max() + 1;
- plt.xlim(x_min,x_max);
- plt.ylim(y_min,y_max);
- plt.xlabel("width");
- plt.ylabel("heigt");
- plt.scatter(train_features[:,1],c = train_labels,marker = 'o',s = 10);
- k = - p.w[1] / p.w[2];
- d = - p.w[0] / p.w[2];
- plt.plot([x_min,x_max],[k * x_min + d,k * x_max + d],"go-");
- plt.show();
- if __name__ == "__main__":
- main();