我正在尝试在计算机上运行NVidia’s face generating demo.我正在使用Windows10.我已经下载了源代码,并试图按照页面下方的步骤进行操作.我已经为我的GTX1060安装了最新的NVidia驱动程序,该驱动程序应该是支持cuda功能的设备.我已经安装了Cuda Toolkit和TensorFlow所需的cuDNN SDK.
但是,运行import_example.py脚本时,出现以下错误.谁能告诉我我在做什么错?
@H_301_8@ 2019-03-19 20:16:26.112574: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your cpu supports instructions that this TensorFlow binary was not compiled to use: AVX2 WARNING:tensorflow:From C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. Traceback (most recent call last): File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1334,in _do_call return fn(*args) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1319,in _run_fn options,Feed_dict,fetch_list,target_list,run_Metadata) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1407,in _call_tf_sessionrun run_Metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation G_paper_1/Run/G_paper_1/latents_in: {{node G_paper_1/Run/G_paper_1/latents_in}}was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:cpu:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU,but CUDA is not enabled. [[{{node G_paper_1/Run/G_paper_1/latents_in}}]] During handling of the above exception,another exception occurred: Traceback (most recent call last): File ".\import_example.py",line 21,in <module> images = Gs.run(latents,labels) File "C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py",line 668,in run mb_out = tf.get_default_session().run(out_expr,dict(zip(self.input_templates,mb_in))) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 929,in run run_Metadata_ptr) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1152,in _run Feed_dict_tensor,options,line 1328,in _do_run run_Metadata) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\client\session.py",line 1348,in _do_call raise type(e)(node_def,op,message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation G_paper_1/Run/G_paper_1/latents_in: node G_paper_1/Run/G_paper_1/latents_in (defined at C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py:508) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:cpu:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU,but CUDA is not enabled. [[node G_paper_1/Run/G_paper_1/latents_in (defined at C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py:508) ]] Caused by op 'G_paper_1/Run/G_paper_1/latents_in',defined at: File ".\import_example.py",line 645,in run out_expr = self.get_output_for(*in_split[gpu],return_as_list=True,**dynamic_kwargs) File "C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py",line 508,in get_output_for named_inputs = [tf.identity(expr,name=name) for expr,name in zip(in_expr,self.input_names)] File "C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py",in <listcomp> named_inputs = [tf.identity(expr,self.input_names)] File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\util\dispatch.py",line 180,in wrapper return target(*args,**kwargs) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\ops\array_ops.py",line 81,in identity ret = gen_array_ops.identity(input,name=name) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\ops\gen_array_ops.py",line 4537,in identity "Identity",input=input,name=name) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\framework\op_def_library.py",line 788,in _apply_op_helper op_def=op_def) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\util\deprecation.py",line 507,in new_func return func(*args,**kwargs) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\framework\ops.py",line 3300,in create_op op_def=op_def) File "C:\Users\me\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow\python\framework\ops.py",line 1801,in __init__ self._traceback = tf_stack.extract_stack() InvalidArgumentError (see above for traceback): Cannot assign a device for operation G_paper_1/Run/G_paper_1/latents_in: node G_paper_1/Run/G_paper_1/latents_in (defined at C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py:508) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:cpu:0 ]. Make sure the device specification refers to a valid device. The requested device appears to be a GPU,but CUDA is not enabled. [[node G_paper_1/Run/G_paper_1/latents_in (defined at C:\Users\me\Desktop\progressive_growing_of_gans-master\tfutil.py:508) ]]
最佳答案
Cannot assign a device for operation
G_paper_1/Run/G_paper_1/latents_in: {{node
G_paper_1/Run/G_paper_1/latents_in}}was explicitly assigned to
/device:GPU:0 but available devices are [
/job:localhost/replica:0/task:0/device:cpu:0 ]
您是否安装了tensorflow或tensorflow-gpu?如果要使用GPU,则后者是您想要的.
这也可能是版本兼容性问题.
首先,检查是否安装了nvidia驱动程序:nvidia-smi,您应该得到类似以下的内容:
@H_301_8@Mon Apr 1 12:30:02 2019 +------------------------------------------------------+ | NVIDIA-SMI 3.295.41 Driver Version: 295.41 | |-------------------------------+----------------------+----------------------+ | Nb. Name | Bus Id Disp. | Volatile ECC SB / DB | | Fan Temp Power Usage /Cap | Memory Usage | GPU Util. Compute M. | |===============================+======================+======================| | 0. GeForce GTX 580 | 0000:25:00.0 N/A | N/A N/A | | 54% 70 C N/A N/A / N/A | 25% 383MB / 1535MB | N/A Default | |-------------------------------+----------------------+----------------------| | Compute processes: GPU Memory | | GPU PID Process name Usage | |=============================================================================| | 0. Not Supported | +-----------------------------------------------------------------------------+
之后,使用nvcc –version检查您拥有的cuda版本.例:
@H_301_8@nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2016 NVIDIA Corporation Built on Mon_Apr__1_12:34:01_CDT_2016 Cuda compilation tools,release 8.0,V8.0.44
最终,检查是否已安装兼容版本的python / tensorflow / cuda.为此,对于大多数人来说,使用table作为参考似乎可行.
安装驱动程序后,不要忘记重启!