环境
- pip install opencv-python==3.4.2.16
- pip install opencv-contrib-python==3.4.2.16
理论
克里斯·哈里斯(Chris Harris)和迈克·史蒂芬斯(Mike Stephens)在1988年的论文《组合式拐角和边缘检测器》中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器。
函数:cv2.cornerHarris(),cv2.cornerSubPix()
示例代码
- import cv2
- import numpy as np
- filename = 'molecule.png'
- img = cv2.imread(filename)
- gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- gray = np.float32(gray)
- dst = cv2.cornerHarris(gray,2,3,0.04)
- #result is dilated for marking the corners,not important
- dst = cv2.dilate(dst,None)
- # Threshold for an optimal value,it may vary depending on the image.
- img[dst>0.01*dst.max()]=[0,255]
- cv2.imshow('dst',img)
- if cv2.waitKey(0) & 0xff == 27:
- cv2.destroyAllWindows()
原图
输出图
SubPixel精度的角落
- import cv2
- import numpy as np
- filename = 'molecule.png'
- img = cv2.imread(filename)
- gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
- # find Harris corners
- gray = np.float32(gray)
- dst = cv2.cornerHarris(gray,0.04)
- dst = cv2.dilate(dst,None)
- ret,dst = cv2.threshold(dst,0.01*dst.max(),255,0)
- dst = np.uint8(dst)
- # find centroids
- ret,labels,stats,centroids = cv2.connectedComponentsWithStats(dst)
- # define the criteria to stop and refine the corners
- criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,100,0.001)
- corners = cv2.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
- # Now draw them
- res = np.hstack((centroids,corners))
- res = np.int0(res)
- img[res[:,1],res[:,0]]=[0,255]
- img[res[:,3],2]] = [0,0]
- cv2.imwrite('subpixel5.png',img)
输出图
参考