本次用 pytroch 来实现一个简单的回归分析,也借此机会来熟悉 pytorch 的一些基本操作。
1. 建立数据集
- import torch
- from torch.autograd import Variable
- import matplotlib.pyplot as plt
- # torch.linspace(-1,1,100)表示返回一个一维张量,包含在区间 -1到1 上均匀间隔的100个点;
- # torch.unsqueeze(input,dim=1)表示转换维度
- x = torch.unsqueeze(torch.linspace(-1,100),dim=1)
- # 生成的y值为x的平方加上随机数
- y = x.pow(2) + 0.2*torch.rand(x.size())
- # 用 Variable 来修饰这些数据 tensor
- x,y = torch.autograd.Variable(x),Variable(y)
- # 画图
- plt.scatter(x.data.numpy(),y.data.numpy())
- plt.show()
2. 构建神经网络
- import torch
- import torch.nn.functional as F # 激励函数都在这
- class Net(torch.nn.Module): # 继承 torch 的 Module
- def __init__(self,n_feature,n_hidden,n_output):
- super(Net,self).__init__() # 继承 __init__ 功能
- # 定义每层用什么样的形式
- self.hidden = torch.nn.Linear(n_feature,n_hidden) # 隐藏层线性输出
- self.predict = torch.nn.Linear(n_hidden,n_output) # 输出层线性输出
- def forward(self,x): # 这同时也是 Module 中的 forward 功能
- # 正向传播输入值,神经网络分析出输出值
- x = F.relu(self.hidden(x)) # 激励函数(隐藏层的线性值)
- x = self.predict(x) # 输出值
- return x
- net = Net(n_feature=1,n_hidden=10,n_output=1)
- print(net) # net 的结构
- """
- Net (
- (hidden): Linear (1 -> 10)
- (predict): Linear (10 -> 1)
- )
- """
3. 实时绘图查看回归效果
- import matplotlib.pyplot as plt
- plt.ion() #打开交互绘图模式(便于实时显示图像变化)
- plt.show()
- optimizer = torch.optim.SGD(net.parameters(),lr=0.1) # 定义优化器和学习率
- loss_func = torch.nn.MSELoss() #定义损失函数
- for t in range(200):
- prediction = net(x)
- loss = loss_func(prediction,y)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- if t%5 == 0:
- plt.cla()
- plt.scatter(x.data.numpy(),y.data.numpy()) # 画散点图
- plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5) # 画拟合曲线
- plt.text(0.5,'Loss=%.4f' % loss.data[0],fontdict={'size':20,'color':'red'}) # 显示损失数值
- plt.pause(0.1)
- # 如果在脚本中使用ion()命令开启了交互模式,没有使用ioff()关闭的话,则图像会一闪而过,并不会常留。要想防止这种情况,需要在plt.show()之前加上ioff()命令。
- plt.ioff()
- plt.show()
运行终态效果图如下:
以上这篇pytorch 模拟关系拟合——回归实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。